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LETTER TO THE EDITOR 

Walks on the Penrose lattice 

Greet Langiet and Ferenc Igl6ifS 
t laboratorium voor Vaste Stof-Fysika en Magnetisme, Katholieke Universiteit Leuven, 
B-3001 Lcwen, Belgium 
t Laboratoire de Physique du Solidell, Universit6 de Nancy I, BP 239, F-54506 Vandceuvre 
I& Nancy cedex, France 

Keceived 4 December iYYi, in final form I Februaly iYY2 

AbslrseL We performed extensive Monte Carlo simulations far different types of walks 
(random walks, ideal chains and self-avoiding walks) on the Penrose quasilattice. The 
critical exponent v-for each pmces-is found to be the same as for periodic Iwo- 
dimensional lattices, thus universality seems to hold also for the Penrose tiling. 

The discovery of quasicrystals [l] has started intensive theoretical activity to under- 
stand their structure and to generalize concepts developed for periodic lattices (for 
a recent review see [2]).  Quasilattices have local symmetries [3] (five-fold rotations, 
icosahedral point group etc.) which are forbidden in regular, periodic lattices. Fur- 
thermore they exhibit strong long-range correlations, which are absent in other type  
of irregular systems (liquids, glasses). In spite of some similarities quasilattices are 
also essentially different from other types of lattices with long-range correlations 
(fractals, directed lattices) or from problems with randomness or dilution. 

One interesting question concerning quasicrystals is how the irregular structure 
of the lattice influences the form of critical correlations, whether they keep their 
universal form observed on different, periodic lattices with the same spatial dimension. 
Until now studies of this problem have been mainly restricted to lattices with one- 
dimensional aperiodicity. Exact results are available for the quantum mechanical 
phase transition of the onedimensional transverse Ising model on the Fibonacci 
lattice and on some other aperiodic lattices. For a class of lattices (Fibonacci and 
related sequences) a phase transition with universal, Ising type critical exponents is 
observed [kij, wniie for some hierarhicai sequences the transition is washed out by 
the presence of too high barriers [SI. The observations for the onedimensional X Y  
model are essentially the same [SI, and one expects also the same type of properties 
of the thermodynamical phase transition of two-dimensional layered Ising systems 
where the aperiodicity is restricted only to one direction [9]. 

For two-dimensional pentagonal quasiperiodic lattices (such as the Penrose lat- 
tice [lo]) the known results are Scarce. Godrkche el a1 [ll] have studied the k i n g  
model on the Penrose lattice (PL) by means of the Migdal-Kadanoff scheme, and 
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found a phase transition similar to the usual one encountered on periodic lattices. 
Monte Carlo simulations on the Ising model [12,13] and on the percolation prob- 
lem [14] have given numerical evidence for universality on the PL On the other hand 
Korepin [U] has constructed exactly solvable vertex models with appropriate rules on 
the PL 

In the present letter we consider another cooperative process on the PL: we 
investigate the asymptotic behaviour of different types of walks, such as random 
walks (RW), ideal chains (IC) and self-avoiding walks (SAW). We note that different 
types of walks on irregular lattices (fractals [16], random systems 1171, percolation 
clusters [18] etc) have become subject of intensive investigations recently. A RW 
describes the diffusion process through the lattice, while IC and SAW are considered 
to be idealised and ‘realistic’ models, respectively, of a single polymer chain in a good 
solvent [19]. Furthermore, the SAW being the n = 0 limit of the O(n) model [19], 
this process makes a connection with magnetic phase transitions on the PL Since SAW 
usually can be studied with higher accuracy comparing to other magnetic systems, we 
hope to get clearer evidence for the exktence/non-existence of universality on the PL 

In this letter we investigate the asymptotic behaviour of the square of the end-to- 
end distance 

(R:) = A N ~ Y  (1) 
for walks with N steps. We use a Monte Carlo (MC) simulation method (for a re- 
view see [20]), in which the underlying lattice for each walk is generated separately, 
by randomly choosing the angle of the projection in the projection method of de 
Bruijn [21]. Thus each walk has a different starting point and local environment, 
such that the averaging with respect to the starting points of the walks has automat- 
ically been performed. We note that quasilattices with higher local symmetries were 
excluded, such as the so-called singular and exceptionally singular lattices [21]. 

The Penrose tiling we consider is built up of two rhombuses with the same edge a, 
and has an inhomogeneous coordination number with possible values qi = 3,4,5,6 
and 7; its value on average is four. Thus the length of a step is always the same; 
however the possible orientations of the step are determined by the local environment 
of the given point. In the following, first results on the two relatively simpler processes 
(RW and IC) are presented, while properties of the SAW are discussed afterwards. 

The possible configurations for RW and IC are the same and-for regular lattices- 
they are even equivalent, since they have equal statistical weights in this case, while 
for lattices with inhomogeneous coordination number the two processes have different 
statistical weights. For an IC the statistical weight of all chains with the same length 
is the same; however for the RW it is proportional to the inverse product of the 
coordination numbers of the visited sites: ni q,:’.We note that in the case of fractals 
there is a contrwersy over whether the IC and RW belong to the same universality 
class or not [16]. 

To address this problem in the case of the PL we studied the average square end- 
to-end distance for walks up to a length of N = 1000. For each length the average 
was taken over A4 = 40 000 generated walks. Results for IC and RW are drawn in 
figure 1 on a log-log scale. One can see that the resulting points are lying on a straight 
line with equal slope in both cases, such that the slopes-within the error of the 
estimation-correspond to thevalue on regular lattices: 2vRW = 2 y c  = 1.0f0.005. 

Different types of correlations between successive steps of the two processes, 
however, result in different amplitudes in equation (1). Thii quantity can generally 
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Flgure 1. Average square end-to-end distance as a function of the length of the walk for 
IC and Rw on a log-log scale. The straight l ine  through the data have slope 1. (Note 
the scales on the vertical axes are shifted for the WO processes.) 

be written as A = aZ( l  - f), where a is the lattice spacing and f is a correlation 
factor. On periodic lattices, where the successive steps are uncorrelated, f = 0. 
On the PL we found weak correlations for rc-fic = 0.015 & 0,005-while for RW 
the observed correlations are stronger: fRw = 0.060 f 0.005. This behaviour is 
possibly connected to the fact, that on the PL there is relatively higher probability for 
a random walker to go backwards than to go ahead compared with the probabilities 
on a regular lattice. 

Now we turn to discuss results of SAW. In this case we generated M = 100000 
walks up to a length of N = 200 by the extended biased sampling method [20]. 
A plot of the average square end-to-end distance versus the number of steps on a 
log-log scale on figure 2 reveals that the points in average are lying on a straight line, 
the slope of which is close to the regular lattice value 2vsAw = 1.5 [22]. However, 
the relative noise of the obtained results is increasing with the order, therefore one 
needs sophisticated methods for an accurate determination of the critical exponent 
U. 
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V 
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Plgum 2. Average square end-to-end distance as a function of the length of the walk 
for SAW on a log-log scale. The straight line thmugh the data has a slope 1.5. 
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The possible use of different methods of series analysis [23] for series with stochas- 
tic coefficients has recently been critically tested by Dekeyser el ul [24]. It was ob- 
served that after a smoothing transformation-corresponding to a partial summation 
of the series--even the simple ratio method gives reasonable estimates, sometimes 
better than other standard methods of series analysis (Pad6 approximants, differential 
approximants). 

Therefore our results were first analysed by the ratio method after s = 1 , 2 , 3 , 4  
and 5 partial summations. Estimates for the critical exponent 2u as a function of 
1 / N  are drawn in figure 3(u), while the statistical error of the estimates (calculated 
by dividing the 100 000 walks into 100 equal groups) is presented in figure 3(b). As 
expected, the statistical error of the estimates decreases with s, while at the same 
time the strength of the confluent singularity-demonstrated by the curvature of the 
estimates in figure 3(a)-increases. One may minimize the two sources of errors 
around 5 = 3 - 5, such that one obtains: 

2uSAw = 1.48 k 0.04 (2) 

while the amplitude in equation (1) is estimated as AlaZ = 0.79(1). We analysed the 
series also by the dlog Pad6 method, in which case the smoothing is ineffective [24]. 
By this method we obtained 2usAw = 1.53 & 0.05, which is in agreement with the 
earlier estimate in equation (2). 

1 / N  1 / N  

Figure 3. Average (a) and statistical error ( b )  for 2" of SAW by the ratio method using 
nriousvalu~ofsmoothing (s = 1 -, s =  2 -, s = 3 --., 8 = 4 - .  -, s = 5 
. . . . . .). 

At this point we comment on the possible sources of errors in the estimation 
of usAw. The statistical error of the MC-data is about 1-2% and slowly increasing 
with the length of the walk. By a partial summation-according to figure 3(b)- 
the stochasticity of the results can be considerably decreased, but at the same time 
the strength of the confluent singularity, the other important error of estimation 
is increasing. Finally, an extra source of error in the present case comparing with 
standard MC simulations is the inhomogeneity of the underlying Penrose lattice. The 
uncertainty coming from this effect is estimated to a few thousends on the basis of 
the accuracy of the statistical weigths of the different vertices of the Penrose lattice 
obtained in the simulation. 
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In conclusion with our MC simulation we have accurately demonstrated the uni- 
versal behaviour of the SAW on the Penrose quasilattice. Our investigation-together 
with others made on similar magnetic models [12-14]-supports the general con- 
jecture that magnetic phase transitions exhibit universal critical behaviour on the 
two-dimemional Penrose lattice. 

FI is indebted to the Laboratoire de Physique du Solide for hospitality. Useful 
discussions with R Dekeyser, G Giugliarelli, J 0 Indekeu, J KolMr and L Tbrban are 
gratefully acknowledged. 
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